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Task Parallel Programming Models

• Task-parallel programming models are popular tools for
multicore programming

• They are general, simple and can be implemented efficiently

Runtime Layer
(Cilk, TBB, OpenMP, ..)

C C C C

Tasks
DAG

Cores

• Task-parallel runtimes manage assignation of tasks to cores,
allowing programmers to write cleaner code
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Performance of Runtime Systems

• Runtime schedulers implement heuristics to maximize
parallelism and optimize resource sharing

• Performance can depend considerably on such heuristics,
degradation often occurs without any obvious reason
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Scalability of task parallel applications

Why do task parallel codes not scale linearly?

• Runtime Overheads: execution cycles inside API calls

• Parallel Idleness: lost cycles due to load imbalance and lack
of parallelism

• Resource Sharing: additional cycles due to contention or
destructive sharing → work time inflation (WTI)
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Quantifying Parallelization Stretch

• OVRN = Non-work Overheads at N cores (API + IDLE time)

• WTIN = Work Time Inflation at N cores
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Case Study: Matmul and FMM

Matrix Multiplication (C = A x B)

• Input Size: 4096×4096 elements

• Task Inputs/Outputs: 2D submatrices

• Average task size1: 17 µs

Fast Multipole Method: Tree Traversal2

• Input Size: 1 million particles (Plummer)

• Task Inputs/Outputs: octree cells (multipoles and vectors of
bodies)

• Average task size: 3.25 µs

1measured on Intel Xeon E7-4807 at 1.86GHz
2https://bitbucket.org/rioyokota/exafmm-dev

https://bitbucket.org/rioyokota/exafmm-dev


Case Study: three runtimes

• MassiveThreads: Cilk-like runtime with random work stealer
and work-first policy.

• Threading Building Blocks: C++ template based runtime
with random work stealer and help-first policy.

• Qthread: Locality-aware runtime with shared task queue. A
set of workers are grouped in a shepherd. Bulk work stealing
across shepherds (50% of victim’s tasks). Help-first policy.

C C C CLIFO
local task
scheduling

FIFO
Work 
stealing

Task Queues

MassiveThreads
Work First

C C C CLIFO
local task
scheduling

FIFO
Work 
stealing

Task Queues

Help First

Thread Building Blocks

C C C C C C C CC C C C

LIFO
global task
scheduling

NUMA 
node #2

(shepherd)

bulk FIFO
work stealing

“shepherd”

Qthread
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Experimental Setup

• Experimental platform is a 4-socket Intel Xeon E7- 4807
(Westmere) machine with 6 cores per die (1.87GHz) and
18MB of LLC.

• We specify the same subset of cores for every experiment

• The following runtime configurations are used:

Runtime Task Creation Work Stealing Task Queue

MTH Work-First Random / 1 task Core/LIFO

TBB Help-First Random / 1 task Core/LIFO

QTH/Core Help-First Random / Bulk Core/LIFO

QTH/Socket Help-First Random / Bulk Socket/LIFO
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Speed-Ups for Matmul and FMM

Matmul FMM
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Performance Variation at 24 Cores:

• Matmul: 16×–21× (MTH best, QTH/Socket worst)

• FMM: 9×–18× (MTH best, TBB worst)
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Overheads (OVRN) for Matmul and FMM

Matmul FMM
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Overheads are obtained by measuring the time cores spend outside
of work kernels. At 24 cores:

• Matmul: 1.1×–1.4× (MTH best; QTH/Socket worst)

• FMM: 1.3×–2.2× (MTH best; TBB and QTH/Socket worst)
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Do overheads alone explain performance?

Normalized speed-up overhead product

Speed-UpN = N
OVRN×WTIN

→ Speed-UpN×OVRN

N = 1
WTIN

• The normalized speed-up overhead product is a measure of
performance loss due to resource sharing

• A value of 1.0 means no work time inflation is occurring
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Normalized speed-up overhead product

Matmul FMM
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Speed-up degradation due to resource contention

• Matmul: 2%–10% (MTH best; TBB worst)

• FMM: 2%–18% (MTH best; TBB worst)

• Reason? cache effects due to different orders of tasks
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Performance bottlenecks analysis

• Overheads can be studied with a variety of tools

• Sampling-based: perf1, HPCToolkit2, extrae3, etc
• Tracing-based: vampirtrace4, TAU5, extrae, etc
• Runtime library support

• How can we analyze the impact of different runtime
schedulers on data locality?

→ Proposal: use the reuse distance to evaluate cache performance

1https://perf.wiki.kernel.org
2http://hpctoolkit.org/
3http://www.bsc.es/computer-sciences/performance-tools/paraver
4http://www.vampir.eu
5http://tau.uoregon.edu

https://perf.wiki.kernel.org
http://hpctoolkit.org/
http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.vampir.eu
http://tau.uoregon.edu
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Multicore-aware Reuse Distance
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• Generation of full address traces is too intrusive

→ changes task schedules

• Computing the reuse distance is expensive
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Lightweight data tracing

We make several assumptions to reduce the cost of the metric

• Cache performance is dominated by global (shared) data

→ short lived stack variables are not tracked. Only the
kernel inputs/outputs are recorded.

• Performance is dominated by last level cache misses

→ we interleave the address streams of all threads and
compute the reuse distance histogram

• For large reuse distances individual LD/ST tracking is not
needed

→ we record kernel inputs at bulk (timestamp,

address, size)
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Kernel Reuse Distance (KRD)
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Kernel Reuse Distance: Application

Kernel Reuse Distance (KRD)

KRD provides an intuitive measure of data reuse quality. We want
to make quick assessments on reuse, comparing the performance of
different schedulers
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Instrumentation

• We record submatrices for matmul, and multipoles and body
arrays for FMM

• Total overhead below 5% for FMM and below 1% for Matmul

• As memory traces record data regions, histogram generation is
much faster
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KRD histograms and runtime schedulers

• We first analyze the correlation of different schedulers and the
KRD metric:

• Four schedulers

• MassiveThreads, TBB, Qthread/Core and
Qthread/Socket

• Three system configurations:

• 1 core
• 1 socket (6 cores)
• 4 sockets (24 cores)
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Single Core Kernel Reuse Distance (KRD-1)

Matmul FMM
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Almost no variations between histograms:

• In the abscence of work steals order is only determined by
Work-First or Help-First

• Matmul kernel order is independent of spawn policy. FMM is
sensitive, but differences are still minimal
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Single Socket / 6 Core Kernel Reuse Distance (KRD-6)

Matmul FMM
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• QTH/Socket shared queue improves temporal locality

• Other schedulers almost no difference. TBB slightly better

• Differences in FMM are much smaller
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Four Sockets / 24 Core Kernel Reuse Distance (KRD-24)

Matmul FMM
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• Differences in distant reuses grow

• QTH/Socket shared queue also improves temporal locality
with multiple sockets

• TBB suffers in the context of multiple sockets
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Impact of Multiple Sockets on Cold Accesses

Matmul FMM

1 socket

80

85

90

95

100

4M
B

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B 

INF 

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

99.1%

88

90

92

94

96

98

100

1M
B

4M
B

16M
B

64M
B 

INF 

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

97.5%

4 sockets

80

85

90

95

100

4M
B 

8M
B

16M
B

32M
B

64M
B

128M
B

256M
B

INF

R
eu

se
 R

at
io

 (
%

)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

96.2%

97.4%

88

90

92

94

96

98

100

1M
B

4M
B

16M
B 

64M
B

INF 

R
e

u
se

 R
a

tio
 (

%
)

Reuse Distance (Bytes)

MassiveThreads
Threading Building Blocks

QThread/Core
QThread/Socket

95.6%

93.5%

PMBS’13, Denver, November 18th 2013 28



KRD histograms and performance

• Want to understand how the KRD metric correlates with
hardware performance metrics

• We choose a multisocket low overheads scenario: Matmul on
2 sockets / 12 cores

• Low Overhead: MTH, TBB, QTH/Core overheads
around 1.1-1.2×
• Moderate Overhead: QTH/Socket overhead 1.35×
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Hardware Metrics and KRD for Matmul on 2 sockets

Runtime Exec. Time OVR12 LLC Misses Kernel Time & Inflation

MTH 1.642 sec 1.094× 1.829×106 17441ns (1.0250×)

TBB 1.742 sec 1.11× 2.807×106 17898ns (1.0519×)

QTH/Core 1.859 sec 1.21× 2.339×106 17767ns (1.0441×)

QTH/Socket 2.111 sec 1.34× 1.987×106 18401ns (1.0814×)
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• LLC misses correlate to data
reuse histograms

• QTH/Socket LLC miss rate
and WTI too large.

• Runtime activity is causing
additional misses and
contention on memory
subsystem
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Discussion

Tracks only global data accesses in bulk

• The user needs to ensure that stack accesses are negligible

• For matmul we found that stack accesses are less than 1%

No modeling of the effects of cache coherence

• Affects multisocket scenario, our results are optimstic

No measurement of spatial locality

• A spatial locality metric could be added to model prefetchers.
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Summary of findings

• We developed a tool based on the reuse distance to study
reuse in task parallel applications. The tools is designed to be
lightweight and can provide fast comparison of different
implementations.

• Although the tool was developed to compare task parallel
runtimes, it can be applied to any shared memory model.

• Our experiments indicate that the reuse distance histograms
correlate with scheduler policies and with hardware metrics
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Thank you!

Questions?
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